Probabilistic Modeling of Exam Durations in Radiology Procedures.

阅读:7
作者:Raghavan Usha Nandini, Hall Christopher S, Tellis Ranjith, Mabotuwana Thusitha, Wald Christoph
In this paper, we model the statistical properties of imaging exam durations using parametric probability distributions such as the Gaussian, Gamma, Weibull, lognormal, and log-logistic. We establish that in a majority of radiology procedures, the underlying distribution of exam durations is best modeled by a log-logistic distribution, while the Gaussian has the poorest fit among the candidates. Further, through illustrative examples, we show how business insights and workflow analytics can be significantly impacted by making the correct (log-logistic) versus incorrect (Gaussian) model choices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。