MRI lung lobe segmentation in pediatric cystic fibrosis patients using a recurrent neural network trained with publicly accessible CT datasets.

阅读:10
作者:Pusterla Orso, Heule Rahel, Santini Francesco, Weikert Thomas, Willers Corin, Andermatt Simon, Sandkühler Robin, Nyilas Sylvia, Latzin Philipp, Bieri Oliver, Bauman Grzegorz
PURPOSE: To introduce a widely applicable workflow for pulmonary lobe segmentation of MR images using a recurrent neural network (RNN) trained with chest CT datasets. The feasibility is demonstrated for 2D coronal ultrafast balanced SSFP (ufSSFP) MRI. METHODS: Lung lobes of 250 publicly accessible CT datasets of adults were segmented with an open-source CT-specific algorithm. To match 2D ufSSFP MRI data of pediatric patients, both CT data and segmentations were translated into pseudo-MR images that were masked to suppress anatomy outside the lung. Network-1 was trained with pseudo-MR images and lobe segmentations and then applied to 1000 masked ufSSFP images to predict lobe segmentations. These outputs were directly used as targets to train Network-2 and Network-3 with non-masked ufSSFP data as inputs, as well as an additional whole-lung mask as input for Network-2. Network predictions were compared to reference manual lobe segmentations of ufSSFP data in 20 pediatric cystic fibrosis patients. Manual lobe segmentations were performed by splitting available whole-lung segmentations into lobes. RESULTS: Network-1 was able to segment the lobes of ufSSFP images, and Network-2 and Network-3 further increased segmentation accuracy and robustness. The average all-lobe Dice similarity coefficients were 95.0 ± 2.8 (mean ± pooled SD [%]) and 96.4 ± 2.5, 93.0 ± 2.0; and the average median Hausdorff distances were 6.1 ± 0.9 (mean ± SD [mm]), 5.3 ± 1.1, 7.1 ± 1.3 for Network-1, Network-2, and Network-3, respectively. CONCLUSION: Recurrent neural network lung lobe segmentation of 2D ufSSFP imaging is feasible, in good agreement with manual segmentations. The proposed workflow might provide access to automated lobe segmentations for various lung MRI examinations and quantitative analyses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。