Sulfoproteomics Workflow with Precursor Ion Accurate Mass Shift Analysis Reveals Novel Tyrosine Sulfoproteins in the Golgi.

阅读:5
作者:Kweon Hye Kyong, Kong Andy T, Hersberger Katherine E, Huang Shijiao, Nesvizhskii Alexey I, Wang Yanzhuang, Hakansson Kristina, Andrews Philip C
Tyrosine sulfation in the Golgi of secreted and membrane proteins is an important post-translational modification (PTM). However, its labile nature has limited analysis by mass spectrometry (MS), a major reason why no sulfoproteome studies have been previously reported. Here, we show that a phosphoproteomics experimental workflow, which includes serial enrichment followed by high resolution, high mass accuracy MS, and tandem MS (MS/MS) analysis, enables sulfopeptide coenrichment and identification via accurate precursor ion mass shift open MSFragger database search. This approach, supported by manual validation, allows the confident identification of sulfotyrosine-containing peptides in the presence of high levels of phosphorylated peptides, thus enabling these two sterically and ionically similar isobaric PTMs to be distinguished and annotated in a single proteomic analysis. We applied this approach to isolated interphase and mitotic rat liver Golgi membranes and identified 67 tyrosine sulfopeptides, corresponding to 26 different proteins. This work discovered 23 new sulfoproteins with functions related to, for example, Ca(2+)-binding, glycan biosynthesis, and exocytosis. In addition, we report the first preliminary evidence for crosstalk between sulfation and phosphorylation in the Golgi, with implications for functional control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。