As essential components of ionic polymer electrolytes (IPEs), ionic liquids (ILs) with high ionic conductivity and wide electrochemical window are promising candidates to enable safe and high-energy-density lithium metal batteries (LMBs). Here, we describe a machine learning workflow embedded with quantum calculation and graph convolutional neural network to discover potential ILs for IPEs. By selecting subsets of the recommended ILs, combining with a rigid-rod polyelectrolyte and a lithium salt, we develop a series of thin (~50 μm) and robust (>200âMPa) IPE membranes. The Li|IPEs|Li cells exhibit ultrahigh critical-current-density (6âmAâcm(-2)) at 80â°C. The Li|IPEs|LiFePO(4) (10.3âmgâcm(-2)) cells deliver outstanding capacity retention in 350 cycles (>96% at 0.5C; >80% at 2C), fast charge/discharge capability (146 mAh g(-1) at 3C) and excellent efficiency (>99.92%). This performance is rarely reported by other single-layer polymer electrolytes without any flammable organics for LMBs.
Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries.
阅读:2
作者:Li Kai, Wang Jifeng, Song Yuanyuan, Wang Ying
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2023 | 起止号: | 2023 May 15; 14(1):2789 |
| doi: | 10.1038/s41467-023-38493-7 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
