LC-SRM Combined With Machine Learning Enables Fast Identification and Quantification of Bacterial Pathogens in Urinary Tract Infections.

阅读:3
作者:Gotti Clarisse, Roux-Dalvai Florence, Bérubé Ève, Lacombe-Rastoll Antoine, Leclercq Mickaël, Jacob Cristina C, Boissinot Maurice, Martins Claudia, Wijeratne Neloni R, Bergeron Michel G, Droit Arnaud
Urinary tract infections (UTIs) are a worldwide health problem. Fast and accurate detection of bacterial infection is essential to provide appropriate antibiotherapy to patients and to avoid the emergence of drug-resistant pathogens. While the gold standard requires 24 h to 48 h of bacteria culture prior to MALDI-TOF species identification, we propose a culture-free workflow, enabling bacterial identification and quantification in less than 4 h using 1 ml of urine. After rapid and automatable sample preparation, a signature of 82 bacterial peptides, defined by machine learning, was monitored in LC-MS, to distinguish the 15 species causing 84% of the UTIs. The combination of the sensitivity of the SRM mode on a triple quadrupole TSQ Altis instrument and the robustness of capillary flow enabled us to analyze up to 75 samples per day, with 99.2% accuracy on bacterial inoculations of healthy urines. We have also shown our method can be used to quantify the spread of the infection, from 8 × 10(4) to 3 × 10(7) CFU/ml. Finally, the workflow was validated on 45 inoculated urines and on 84 UTI-positive urine from patients, with respectively 93.3% and 87.1% of agreement with the culture-MALDI procedure at a level above 1 × 10(5) CFU/ml corresponding to an infection requiring antibiotherapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。