Dynamic modulation of phasic and asynchronous glutamate release in hippocampal synapses

海马突触中相位和异步谷氨酸释放的动态调节

阅读:9
作者:Chun Yun Chang, Steven Mennerick

Abstract

Although frequency-dependent short-term presynaptic plasticity has been of long-standing interest, most studies have emphasized modulation of the synchronous, phasic component of transmitter release, most evident with a single or a few presynaptic stimuli. Asynchronous transmitter release, vesicle fusion not closely time locked to presynaptic action potentials, can also be prominent under certain conditions, including repetitive stimulation. Asynchrony has often been attributed to residual Ca(2+) buildup in the presynaptic terminal. We verified that a number of manipulations of Ca(2+) handling and influx selectively alter asynchronous release relative to phasic transmitter release during action potential trains in cultured excitatory autaptic hippocampal neurons. To determine whether other manipulations of vesicle release probability also selectively modulate asynchrony, we probed the actions of one thoroughly studied modulator class whose actions on phasic versus asynchronous release have not been investigated. We examined the effects of the phorbol ester PDBu, which has protein kinase C (PKC) dependent and independent actions on presynaptic transmitter release. PDBu increased phasic and asynchronous release in parallel. However, while PKC inhibition had relatively minor inhibitory effects on PDBu potentiation of phasic and total release during action potential trains, PKC inhibition strongly reduced phorbol-potentiated asynchrony, through actions most evident late during stimulus trains. These results lend new insight into PKC-dependent and -independent effects on transmitter release and suggest the possibility of differential control of synchronous versus asynchronous vesicle release.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。