Panax ginseng was a traditional Chinese medicine with various pharmacological activities and one of its important activities was hypoglycemic activity; therefore, panax ginseng has been used in China as an adjuvant in the treatment of diabetes mellitus. In vivo and in vitro tests have revealed that ginsenosides, which are derived from the roots and rhizomes of panax ginseng have anti-diabetic effects and produce different hypoglycemic mechanisms by acting on some specific molecular targets, such as SGLT1, GLP-1, GLUTs, AMPK, and FOXO1. α-Glucosidase is another important hypoglycemic molecular target, and its inhibitors can inhibit the activity of α-Glucosidase so as to delay the absorption of dietary carbohydrates and finally reduce postprandial blood sugar. However, whether ginsenosides have the hypoglycemic mechanism of inhibiting α-Glucosidase activity, and which ginsenosides exactly attribute to the inhibitory effect as well as the inhibition degree are not clear, which needs to be addressed and systematically studied. To solve this problem, affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS technology was used to systematically select α-Glucosidase inhibitors from panax ginseng. The ligands were selected through our established effective data process workflow based on systematically analyzing all compounds in the sample and control specimens. As a result, a total of 24 α-Glucosidase inhibitors were selected from panax ginseng, and it was the first time that ginsenosides were systematically studied for the inhibition of α-Glucosidase. Meanwhile, our study revealed that inhibiting α-Glucosidase activity probably was another important mechanism for ginsenosides treating diabetes mellitus. In addition, our established data process workflow can be used to select the active ligands from other natural products using affinity ultrafiltration screening.
Screening of Potential α-Glucosidase Inhibitors from the Roots and Rhizomes of Panax Ginseng by Affinity Ultrafiltration Screening Coupled with UPLC-ESI-Orbitrap-MS Method.
阅读:4
作者:Wang Hong-Ping, Fan Chun-Lan, Lin Zhao-Zhou, Yin Qiong, Zhao Chen, Peng Ping, Zhang Run, Wang Zi-Jian, Du Jing, Wang Zhi-Bin
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2023 | 起止号: | 2023 Feb 22; 28(5):2069 |
| doi: | 10.3390/molecules28052069 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
