Characterizing the photolysis processes undergone by transient volatile organic compounds (VOCs) in the troposphere requires the knowledge of their photoabsorption cross-section-quantities often challenging to determine experimentally, particularly due to the reactivity of these molecules. We present a computational tool coined AtmoSpec, which can predict a quantitative photoabsorption cross-section for volatile organic compounds by using computational photochemistry. The user enters the molecule of interest as a SMILES code and, after selecting a level of theory for the electronic structure (and waiting for the calculations to take place), is presented with a photoabsorption cross-section for the low-energy conformers and an estimate of the photolysis rate coefficient for different standardized actinic fluxes. More specifically, AtmoSpec is an automated workflow for the nuclear ensemble approach, an efficient technique to approximate the absolute intensities and excitation wavelengths of a photoabsorption cross-section for a molecule in the gas phase of interest in atmospheric chemistry and astrochemistry. This work provides background information on the nuclear ensemble approach, a guided example of a typical AtmoSpec calculation, details about the architecture of the code, and the current limitations and future developments of this tool.
AtmoSpec-A Tool to Calculate Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds.
阅读:7
作者:Hollas Daniel, Curchod Basile F E
| 期刊: | Journal of Physical Chemistry A | 影响因子: | 2.800 |
| 时间: | 2024 | 起止号: | 2024 Oct 3; 128(39):8580-8590 |
| doi: | 10.1021/acs.jpca.4c05174 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
