Data-Driven Multi-Objective Optimization Tactics for Catalytic Asymmetric Reactions Using Bisphosphine Ligands.

阅读:4
作者:Dotson Jordan J, van Dijk Lucy, Timmerman Jacob C, Grosslight Samantha, Walroth Richard C, Gosselin Francis, Püntener Kurt, Mack Kyle A, Sigman Matthew S
Optimization of the catalyst structure to simultaneously improve multiple reaction objectives (e.g., yield, enantioselectivity, and regioselectivity) remains a formidable challenge. Herein, we describe a machine learning workflow for the multi-objective optimization of catalytic reactions that employ chiral bisphosphine ligands. This was demonstrated through the optimization of two sequential reactions required in the asymmetric synthesis of an active pharmaceutical ingredient. To accomplish this, a density functional theory-derived database of >550 bisphosphine ligands was constructed, and a designer chemical space mapping technique was established. The protocol used classification methods to identify active catalysts, followed by linear regression to model reaction selectivity. This led to the prediction and validation of significantly improved ligands for all reaction outputs, suggesting a general strategy that can be readily implemented for reaction optimizations where performance is controlled by bisphosphine ligands.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。