A two-step developability assessment workflow is described to screen variants of recombinant protein antigens under various formulation conditions to rapidly identify stable, aluminum-adjuvanted, multi-dose vaccine candidates. For proof-of-concept, a series of sequence variants of the recombinant non-replicating rotavirus (NRRV) P[8] protein antigen (produced in Komagataella phaffii) were compared in terms of primary structure, post-translational modifications, antibody binding, conformational stability, relative solubility and preservative compatibility. Based on these results, promising P[8] variants were down-selected and the impact of key formulation conditions on storage stability was examined (e.g., presence or absence of the aluminum-adjuvant Alhydrogel and the preservative thimerosal) as measured by differential scanning calorimetry (DSC) and antibody binding assays. Good correlations between rapidly-generated developability screening data and storage stability profiles (12 weeks at various temperatures) were observed for aluminum-adsorbed P[8] antigens. These findings were extended and confirmed using variants of a second NRRV antigen, P[4]. These case-study results with P[8] and P[4] NRRV variants are discussed in terms of using this vaccine formulation developability workflow to better inform and optimize formulation design with a wide variety of recombinant protein antigens, with the long-term goal of rapidly and cost-efficiently identifying low-cost vaccine formulations for use in low and middle income countries.
Rapid Developability Assessments to Formulate Recombinant Protein Antigens as Stable, Low-Cost, Multi-Dose Vaccine Candidates: Case-Study With Non-Replicating Rotavirus (NRRV) Vaccine Antigens.
阅读:3
作者:Sawant Nishant, Kaur Kawaljit, Holland David A, Hickey John M, Agarwal Sanjeev, Brady Joseph R, Dalvie Neil C, Tracey Mary Kate, Velez-Suberbie M Lourdes, Morris Stephen A, Jacob Shaleem I, Bracewell Daniel G, Mukhopadhyay Tarit K, Love Kerry R, Love J Christopher, Joshi Sangeeta B, Volkin David B
| 期刊: | Journal of Pharmaceutical Sciences | 影响因子: | 3.800 |
| 时间: | 2021 | 起止号: | 2021 Mar;110(3):1042-1053 |
| doi: | 10.1016/j.xphs.2020.11.039 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
