Network meta-analysis is a general approach to integrate the results of multiple studies in which multiple treatments are compared, often in a pairwise manner. In this tutorial, we illustrate the procedures for conducting a network meta-analysis for binary outcomes data in the Bayesian framework using example data. Our goal is to describe the workflow of such an analysis and to explain how to generate informative results such as ranking plots and treatment risk posterior distribution plots. The R code used to conduct a network meta-analysis in the Bayesian setting is provided at GitHub.
How to Conduct a Bayesian Network Meta-Analysis.
阅读:3
作者:Hu Dapeng, O'Connor Annette M, Wang Chong, Sargeant Jan M, Winder Charlotte B
| 期刊: | Frontiers in Veterinary Science | 影响因子: | 2.900 |
| 时间: | 2020 | 起止号: | 2020 May 19; 7:271 |
| doi: | 10.3389/fvets.2020.00271 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
