A highly sensitive protein-RNA cross-linking mass spectrometry workflow with enhanced structural modeling potential.

阅读:11
作者:Sarnowski Chris P, Knörlein Anna, de Vries Tebbe, Götze Michael, Beusch Irene, Aebersold Ruedi, Allain Frédéric H-T, Hall Jonathan, Leitner Alexander
Protein-RNA interactions underpin many critical biological processes, demanding the development of technologies to precisely characterize their nature and functions. Many such technologies depend upon cross-linking under mild irradiation conditions to stabilize contacts between amino acids and nucleobases; for example, the cross-linking of stable isotope labelled RNA coupled to mass spectrometry (CLIR-MS) method. A deeper understanding of the CLIR-MS workflow is required to maximize its impact for structural biology, particularly addressing the low abundance of cross-linking products and the information content of spatial/geometric restraints reflected by a cross-link. Here, we present a vastly improved CLIR-MS pipeline that features enhanced sample preparation, data acquisition and interpretation. These advances significantly increase the number of detected cross-link products per sample. We demonstrate that the procedure is robust against variation of key experimental parameters, including irradiation energy and temperature. Using this improved protocol on four protein-RNA complexes representing canonical and non-canonical RNA-binding domains, we propose for the first time the distances encoded by protein-RNA cross-links, enabling their use as structural restraints. We also compared the cross-linking of canonical RNA with 4-thiouracil-labeled counterparts, showing slight, but noticeable differences. The improved understanding of protein-RNA cross-links refines their structural interpretation and facilitates the adoption of the method in integrative/hybrid structural biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。