Gene expression and protein abundance data of cells or tissues belonging to healthy and diseased individuals can be integrated and mapped onto genome-scale metabolic networks to produce patient-derived models. As the number of available and newly developed genome-scale metabolic models increases, new methods are needed to objectively analyze large sets of models and to identify the determinants of metabolic heterogeneity. We developed a distance-based workflow that combines consensus machine learning and metabolic modeling techniques and used it to apply pattern recognition algorithms to collections of genome-scale metabolic models, both microbial and human. Model composition, network topology and flux distribution provide complementary aspects of metabolic heterogeneity in patient-specific genome-scale models of skeletal muscle. Using consensus clustering analysis we identified the metabolic processes involved in the individual responses to endurance training in older adults.
A Distance-Based Framework for the Characterization of Metabolic Heterogeneity in Large Sets of Genome-Scale Metabolic Models.
阅读:10
作者:Cabbia Andrea, Hilbers Peter A J, van Riel Natal A W
| 期刊: | Patterns | 影响因子: | 7.400 |
| 时间: | 2020 | 起止号: | 2020 Aug 6; 1(6):100080 |
| doi: | 10.1016/j.patter.2020.100080 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
