Identifying and designing high-performance multi-element ceramics based on trial-and-error approaches are ineffective and expensive. Here, we present a machine-learning-accelerated method for prediction of mechanical properties of multi-element ceramics, based on the density functional theory calculation database. Specific bonding characteristics are used as highly efficient machine learning descriptors. This protocol describes a low-cost, high-efficiency, and reliable workflow for developing advanced ceramics with superior mechanical properties. For complete details on the use and execution of this protocol, please refer to Tang et al. (2021).
Protocol to predict mechanical properties of multi-element ceramics using machine learning.
阅读:4
作者:Tang Yunqing, Zhang Dong, Liu Ruiliang, Li Dongyang
| 期刊: | STAR Protocols | 影响因子: | 1.300 |
| 时间: | 2022 | 起止号: | 2022 Sep 16; 3(3):101552 |
| doi: | 10.1016/j.xpro.2022.101552 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
