High-throughput density functional theory (DFT) calculations have become a vital element of computational materials science, enabling materials screening, property database generation, and training of "universal" machine learning models. While several software frameworks have emerged to support these computational efforts, new developments such as machine learned force fields have increased demands for more flexible and programmable workflow solutions. This manuscript introduces atomate2, a comprehensive evolution of our original atomate framework, designed to address existing limitations in computational materials research infrastructure. Key features include the support for multiple electronic structure packages and interoperability between them, along with generalizable workflows that can be written in an abstract form irrespective of the DFT package or machine learning force field used within them. Our hope is that atomate2's improved usability and extensibility can reduce technical barriers for high-throughput research workflows and facilitate the rapid adoption of emerging methods in computational material science.
Atomate2: modular workflows for materials science.
阅读:3
作者:Ganose Alex M, Sahasrabuddhe Hrushikesh, Asta Mark, Beck Kevin, Biswas Tathagata, Bonkowski Alexander, Bustamante Joana, Chen Xin, Chiang Yuan, Chrzan Daryl C, Clary Jacob, Cohen Orion A, Ertural Christina, Gallant Max C, George Janine, Gerits Sophie, Goodall Rhys E A, Guha Rishabh D, Hautier Geoffroy, Horton Matthew, Inizan T J, Kaplan Aaron D, Kingsbury Ryan S, Kuner Matthew C, Li Bryant, Linn Xavier, McDermott Matthew J, Mohanakrishnan Rohith Srinivaas, Naik Aakash N, Neaton Jeffrey B, Parmar Shehan M, Persson Kristin A, Petretto Guido, Purcell Thomas A R, Ricci Francesco, Rich Benjamin, Riebesell Janosh, Rignanese Gian-Marco, Rosen Andrew S, Scheffler Matthias, Schmidt Jonathan, Shen Jimmy-Xuan, Sobolev Andrei, Sundararaman Ravishankar, Tezak Cooper, Trinquet Victor, Varley Joel B, Vigil-Fowler Derek, Wang Duo, Waroquiers David, Wen Mingjian, Yang Han, Zheng Hui, Zheng Jiongzhi, Zhu Zhuoying, Jain Anubhav
| 期刊: | Digital Discovery | 影响因子: | 5.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 4(7):1944-1973 |
| doi: | 10.1039/d5dd00019j | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
