Atomate2: modular workflows for materials science.

阅读:17
作者:Ganose Alex M, Sahasrabuddhe Hrushikesh, Asta Mark, Beck Kevin, Biswas Tathagata, Bonkowski Alexander, Bustamante Joana, Chen Xin, Chiang Yuan, Chrzan Daryl C, Clary Jacob, Cohen Orion A, Ertural Christina, Gallant Max C, George Janine, Gerits Sophie, Goodall Rhys E A, Guha Rishabh D, Hautier Geoffroy, Horton Matthew, Inizan T J, Kaplan Aaron D, Kingsbury Ryan S, Kuner Matthew C, Li Bryant, Linn Xavier, McDermott Matthew J, Mohanakrishnan Rohith Srinivaas, Naik Aakash N, Neaton Jeffrey B, Parmar Shehan M, Persson Kristin A, Petretto Guido, Purcell Thomas A R, Ricci Francesco, Rich Benjamin, Riebesell Janosh, Rignanese Gian-Marco, Rosen Andrew S, Scheffler Matthias, Schmidt Jonathan, Shen Jimmy-Xuan, Sobolev Andrei, Sundararaman Ravishankar, Tezak Cooper, Trinquet Victor, Varley Joel B, Vigil-Fowler Derek, Wang Duo, Waroquiers David, Wen Mingjian, Yang Han, Zheng Hui, Zheng Jiongzhi, Zhu Zhuoying, Jain Anubhav
High-throughput density functional theory (DFT) calculations have become a vital element of computational materials science, enabling materials screening, property database generation, and training of "universal" machine learning models. While several software frameworks have emerged to support these computational efforts, new developments such as machine learned force fields have increased demands for more flexible and programmable workflow solutions. This manuscript introduces atomate2, a comprehensive evolution of our original atomate framework, designed to address existing limitations in computational materials research infrastructure. Key features include the support for multiple electronic structure packages and interoperability between them, along with generalizable workflows that can be written in an abstract form irrespective of the DFT package or machine learning force field used within them. Our hope is that atomate2's improved usability and extensibility can reduce technical barriers for high-throughput research workflows and facilitate the rapid adoption of emerging methods in computational material science.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。