Automatic stochastic 3D clay fraction model from tTEM survey and borehole data.

阅读:8
作者:Neven Alexis, Christiansen Anders Vest, Renard Philippe
In most urbanized and agricultural areas of central Europe, the shallow underground is constituted of Quaternary deposits which are often the most extensively used layers (water pumping, shallow geothermic, material excavation). All these deposits are often complexly intertwined, leading to high spatial variability and high complexity. Geophysical data can be a fast and reliable source of information about the underground. Still, the integration of these data can be time-consuming, it lacks realistic interpolation in a full 3D space, and the final uncertainty is often not represented. In this study, we propose a new methodology to combine boreholes and geophysical data with uncertainty in an automatic framework. A spatially varying translator function that predicts the clay fraction from resistivity is inverted using boreholes description as control points. It is combined with a 3D stochastic interpolation framework based on a Multiple Points Statistics algorithm and Gaussian Random Function. This novel workflow allows incorporating robustly the data and their uncertainty and requires less user intervention than the already existing workflows. The methodology is illustrated for ground-based towed transient electromagnetic data (tTEM) and borehole data from the upper Aare valley, Switzerland. In this location, a 3D realistic high spatial resolution model of clay fraction was obtained over the whole valley. The very dense data set allowed to demonstrate the quality of the predicted values and their corresponding uncertainties using cross-validation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。