Single-cell isolation is an essential step in many biomedical workflows, including genetic analyses and drug-based assays. It is commonly attempted through limiting dilution into microtiter wells. However, dark optical edge effects at the well periphery make it difficult to confirm which wells contain just one cell. Consequently, statistical methods are used to obtain the probability that a well contains a single cell. Sessile microdrops can be deposited in the center of wells away from obscuring walls. If these drops have low contact angles, optical edge effects are minimal. A dilute cell suspension can be infused into such drops, which are then imaged to confirm the presence of a single cell with certainty. Subsequently, wells are flooded with media and incubated to allow clonal growth. The fraction of single cells yielding colonies then provides an accurate and non-probabilistic measure of cloning efficiency. We demonstrate average cloning efficiencies between 62% and 78% with human embryonic kidney, cancer, and induced pluripotent stem cells, as well as Chinese-hamster suspension cells. We verify that stem cells continue to express pluripotency markers after cloning and incorporate the method into a gene-editing workflow for cell-line development. This demonstrates the seamless integration of sessile microdrops into established protocols, providing assurance of monoclonality with high cloning efficiency.
Generation of Clonal Cultures of Adherent or Suspension Cells Using Flat Sessile Drops for Assurance of Monoclonality.
阅读:11
作者:Morgan Joseph A E, Cook Peter R, Castrejón-Pita Alfonso A, Walsh Edmond J
| 期刊: | Biotechnology and Bioengineering | 影响因子: | 3.600 |
| 时间: | 2025 | 起止号: | 2025 Oct;122(10):2739-2750 |
| doi: | 10.1002/bit.70030 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
