Chemometric Strategies for Sensitive Annotation and Validation of Anatomical Regions of Interest in Complex Imaging Mass Spectrometry Data.

阅读:5
作者:Wehrli Patrick M, Michno Wojciech, Blennow Kaj, Zetterberg Henrik, Hanrieder Jörg
Imaging mass spectrometry (IMS) is a promising new chemical imaging modality that generates a large body of complex imaging data, which in turn can be approached using multivariate analysis approaches for image analysis and segmentation. Processing IMS raw data is critically important for proper data interpretation and has significant effects on the outcome of data analysis, in particular statistical modeling. Commonly, data processing methods are chosen based on rational motivations rather than comparative metrics, though no quantitative measures to assess and compare processing options have been suggested. We here present a data processing and analysis pipeline for IMS data interrogation, processing and ROI annotation, segmentation, and validation. This workflow includes (1) objective evaluation of processing methods for IMS datasets based on multivariate analysis using PCA. This was then followed by (2) ROI annotation and classification through region-based active contours (AC) segmentation based on the PCA component scores matrix. This provided class information for subsequent (3) OPLS-DA modeling to evaluate IMS data processing based on the quality metrics of their respective multivariate models and for robust quantification of ROI-specific signal localization. This workflow provides an unbiased strategy for sensitive annotation of anatomical regions of interest combined with quantitative comparison of processing procedures for multivariate analysis allowing robust ROI annotation and quantification of the associated molecular histology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。