Workflow for systematic design of electrochemical in operando NMR cells by matching B (0) and B (1) field simulations with experiments.

阅读:5
作者:Schatz Michael, Streun Matthias, Jovanovic Sven, Eichel Rüdiger-A, Granwehr Josef
Combining electrochemistry (EC) and nuclear magnetic resonance (NMR) techniques has evolved from a challenging concept to an adaptable and versatile method for battery and electrolysis research. Continuous advancements in NMR hardware have fostered improved homogeneity of the static magnetic field, B0 , and the radio frequency field, B1 , yet fundamental challenges caused by introducing essential conductive components into the NMR sensitive volume remain. Cell designs in EC-NMR have largely been improved empirically, at times supported by magnetic field simulations. To propel systematic improvements of cell concepts, a workflow for a qualitative and semi-quantitative description of both B0 and B1 distortions is provided in this study. Three-dimensional finite element method (FEM) simulations of both B0 and B1 fields were employed to investigate cell structures with electrodes oriented perpendicular to B0 , which allow realistic EC-NMR measurements for battery and electrolysis applications. Particular attention is paid to field distributions in the immediate vicinity of electrodes, which is of prime interest for electrochemical processes. Using a cell with a small void outside the electrochemical active region, the relevance of design details and bubble formation is demonstrated. Moreover, B1 amplifications in coin cells provide an explanation for unexpectedly high sensitivity in previous EC-NMR studies, implying the potential for selective excitation of spins close to electrode surfaces. The correlation of this amplification effect with coin geometry is described by empirical expressions. The simulations were validated experimentally utilising frequency-encoded (1)H profile imaging and chemical shift imaging of (1)H, (13)C, and (23)Na resonances of NaHCO3 electrolyte. Finally, the theoretical and experimental results are distilled into design guidelines for EC-NMR cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。