BACKGROUND: Recent development of novel technologies paved the way for quantitative proteomics. One of the most important among them is iTRAQ, employing isobaric tags for relative or absolute quantitation. Despite large progress in technology development, still many challenges remain for derivation and interpretation of quantitative results. One of these challenges is the consistent assignment of peptides to proteins. RESULTS: We have developed Peptide Profiling Guided Identification of Proteins (PPINGUIN), a statistical analysis workflow for iTRAQ data addressing the problem of ambiguous peptide quantitations. Motivated by the assumption that peptides uniquely derived from the same protein are correlated, our method employs clustering as a very early step in data processing prior to protein inference. Our method increases experimental reproducibility and decreases variability of quantitations of peptides assigned to the same protein. Giving further support to our method, application to a type 2 diabetes dataset identifies a list of protein candidates that is in very good agreement with previously performed transcriptomics meta analysis. Making use of quantitative properties of signal patterns identified, PPINGUIN can reveal new isoform candidates. CONCLUSIONS: Regarding the increasing importance of quantitative proteomics we think that this method will be useful in practical applications like model fitting or functional enrichment analysis. We recommend to use this method if quantitation is a major objective of research.
PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios.
阅读:4
作者:Bauer Chris, Kleinjung Frank, Rutishauser Dorothea, Panse Christian, Chadt Alexandra, Dreja Tanja, Al-Hasani Hadi, Reinert Knut, Schlapbach Ralph, Schuchhardt Johannes
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2012 | 起止号: | 2012 Feb 16; 13:34 |
| doi: | 10.1186/1471-2105-13-34 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
