Machine Learning Platform to Discover Novel Growth Inhibitors of Neisseria gonorrhoeae.

阅读:5
作者:Pereira Janaina Cruz, Daher Samer S, Zorn Kimberley M, Sherwood Matthew, Russo Riccardo, Perryman Alexander L, Wang Xin, Freundlich Madeleine J, Ekins Sean, Freundlich Joel S
PURPOSE: To advance fundamental biological and translational research with the bacterium Neisseria gonorrhoeae through the prediction of novel small molecule growth inhibitors via naïve Bayesian modeling methodology. METHODS: Inspection and curation of data from the publicly available ChEMBL web site for small molecule growth inhibition data of the bacterium Neisseria gonorrhoeae resulted in a training set for the construction of machine learning models. A naïve Bayesian model for bacterial growth inhibition was utilized in a workflow to predict novel antibacterial agents against this bacterium of global health relevance from a commercial library of >10(5) drug-like small molecules. Follow-up efforts involved empirical assessment of the predictions and validation of the hits. RESULTS: Specifically, two small molecules were found that exhibited promising activity profiles and represent novel chemotypes for agents against N. gonorrrhoeae. CONCLUSIONS: This represents, to the best of our knowledge, the first machine learning approach to successfully predict novel growth inhibitors of this bacterium. To assist the chemical tool and drug discovery fields, we have made our curated training set available as part of the Supplementary Material and the Bayesian model is accessible via the web. Graphical Abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。