Quantifying extreme failure scenarios in transportation systems with graph learning.

阅读:4
作者:Guo Mingxue, Zhao Tingting, Gao Jianxi, Meng Xin, Gao Ziyou
Statistical analysis of extreme events in complex engineering systems is essential for system design and reliability and resilience assessment. Due to the rarity of extreme events and the computational burden of system performance evaluation, estimating the probability of extreme failures is prohibitively expensive. Traditional methods, such as importance sampling, struggle with the high cost of deriving importance sampling densities for numerous components in large-scale systems. Here, we propose a graph learning approach, called importance sampling based on graph autoencoder (GAE-IS), to integrate a modified graph autoencoder model, termed a criticality assessor, with the cross-entropy-based importance sampling method. GAE-IS effectively decouples the criticality of components from their vulnerability to disastrous events in the workflow, demonstrating notable transferability and leading to significantly reduced computational costs of importance sampling in large-scale networks. The proposed methodology improves sampling efficiency by one to two orders of magnitude across several road networks and provides more accurate probability estimations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。