Noninvasive prediction of failure of the conservative treatment in lateral epicondylitis by clinicoradiological features and elbow MRI radiomics based on interpretable machine learning: a multicenter cohort study.

阅读:15
作者:Cui Jianing, Wang Ping, Zhang Xiaodong, Zhang Ping, Yin Yuming, Bai Rongjie
OBJECTIVES: To develop and validate an interpretable machine learning model based on clinicoradiological features and radiomic features based on magnetic resonance imaging (MRI) to predict the failure of conservative treatment in lateral epicondylitis (LE). METHODS: This retrospective study included 420 patients with LE from three hospitals, divided into a training cohort (n = 245), an internal validation cohort (n = 115), and an external validation cohort (n = 60). Patients were categorized into conservative treatment failure (n = 133) and conservative treatment success (n = 287) groups based on the outcome of conservative treatment. We developed two predictive models: one utilizing clinicoradiological features, and another integrating clinicoradiological and radiomic features. Seven machine learning algorithms were evaluated to determine the optimal model for predicting the failure of conservative treatment. Model performance was assessed using ROC, and model interpretability was examined using SHapley Additive exPlanations (SHAP). RESULTS: The LightGBM algorithm was selected as the optimal model because of its superior performance. The combined model demonstrated enhanced predictive accuracy with an area under the ROC curve (AUC) of 0.96 (95% CI: 0.91, 0.99) in the external validation cohort. SHAP analysis identified the radiological feature "CET coronal tear size" and the radiomic feature "AX_log-sigma-1-0-mm-3D_glszm_SmallAreaEmphasis" as key predictors of conservative treatment failure. CONCLUSIONS: We developed and validated an interpretable LightGBM machine learning model that integrates clinicoradiological and radiomic features to predict the failure of conservative treatment in LE. The model demonstrates high predictive accuracy and offers valuable insights into key prognostic factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。