Flow cytometry is one of the fundamental research tools available to the life scientist. The ability to observe multidimensional changes in protein expression and activity at single-cell resolution for a large number of cells provides a unique perspective on the behavior of cell populations. However, the analysis of complex multidimensional data is one of the obstacles for wider use of polychromatic flow cytometry. Recent enhancements to an open-source platform-R/Bioconductor-enable the graphical and data analysis of flow cytometry data. Prior examples have focused on high-throughput applications. To facilitate wider use of this platform for flow cytometry, the analysis of a dataset, obtained following isolation of CD4(+)CD62L(+) T cells from Balb/c splenocytes using magnetic microbeads, is presented as a form of tutorial. A common workflow for analyzing flow cytometry data was presented using R/Bioconductor. In addition, density function estimation and principal component analysis are provided as examples of more complex analyses. The compendium presented here is intended to help illuminate a path for inquisitive readers to explore their own data using R/Bioconductor (available as Supporting Information).
Scalable analysis of flow cytometry data using R/Bioconductor.
阅读:3
作者:Klinke David J 2nd, Brundage Kathleen M
| 期刊: | Cytometry Part a | 影响因子: | 2.100 |
| 时间: | 2009 | 起止号: | 2009 Aug;75(8):699-706 |
| doi: | 10.1002/cyto.a.20746 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
