The biophysical properties of the tumor microenvironment differ substantially from normal tissues. A constellation of features, including decreased vascularity, lack of lymphatic drainage, and elevated interstitial pressure, diminishes the penetration of therapeutics into tumors. Local hyperthermia within the tumor can alter microenvironmental properties, such as interstitial fluid pressure, potentially leading to improvements in drug penetration. In this context, multi-physics computational models can provide insight into the interplay between the biophysical parameters within the tumor microenvironment and can guide the design and interpretation of experiments that test the bioeffects of local hyperthermia. This paper describes a step-by-step workflow for a computational model coupling partial differential equations describing electrical current distribution, bioheat transfer, and fluid dynamics. The main objective is to study the effects of hyperthermia delivered by a bipolar radiofrequency device on the interstitial fluid pressure within the tumor. The system of mathematical expressions linking electrical current distribution, bioheat transfer, and interstitial fluid pressure is presented, emphasizing the changes in the distribution of the interstitial fluid pressure that could be induced by the thermal intervention.
A Computational Modeling Approach to Investigate the Influence of Hyperthermia on the Tumor Microenvironment.
阅读:7
作者:Bottiglieri Anna, Sheth Rahul A, Prakash Punit
| 期刊: | Jove-Journal of Visualized Experiments | 影响因子: | 1.000 |
| 时间: | 2023 | 起止号: | 2023 Dec 1; (202):10 |
| doi: | 10.3791/65870 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
