Discovery of geranylgeranyltransferase-I inhibitors with novel scaffolds by the means of quantitative structure-activity relationship modeling, virtual screening, and experimental validation.

阅读:3
作者:Peterson Yuri K, Wang Xiang S, Casey Patrick J, Tropsha Alexander
Geranylgeranylation is critical to the function of several proteins including Rho, Rap1, Rac, Cdc42, and G-protein gamma subunits. Geranylgeranyltransferase type I (GGTase-I) inhibitors (GGTIs) have therapeutic potential to treat inflammation, multiple sclerosis, atherosclerosis, and many other diseases. Following our standard workflow, we have developed and rigorously validated quantitative structure-activity relationship (QSAR) models for 48 GGTIs using variable selection k nearest neighbor (kNN), automated lazy learning (ALL), and partial least squares (PLS) methods. The QSAR models were employed for virtual screening of 9.5 million commercially available chemicals, yielding 47 diverse computational hits. Seven of these compounds with novel scaffolds and high predicted GGTase-I inhibitory activities were tested in vitro, and all were found to be bona fide and selective micromolar inhibitors. Notably, these novel hits could not be identified using traditional similarity search. These data demonstrate that rigorously developed QSAR models can serve as reliable virtual screening tools, leading to the discovery of structurally novel bioactive compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。