Up-regulation of PERK/Nrf2/HO-1 axis protects myocardial tissues of mice from damage triggered by ischemia-reperfusion through ameliorating endoplasmic reticulum stress

PERK/Nrf2/HO-1轴上调通过改善内质网应激保护小鼠心肌组织免受缺血再灌注损伤

阅读:6
作者:Jichun Wang, Li Lu, Sisi Chen, Jing Xie, Shuai Lu, Yanli Zhou, Hong Jiang

Background

Ischemia-reperfusion (I/R) injury, which leads to additionally cardiac tissue damage, is a severe adverse effect of reperfusion therapeutics used for the treatment of acute myocardial infarction. Agents capable of alleviating I/R-induced myocardial injury are urgently needed. In this study, we investigated whether up-regulation of PERK/Nrf2/HO-1 axis provided protective roles for murine myocardium suffering I/R intervention.

Conclusions

We, for the first time, discovered that up-regulation of PERK/Nrf2/HO-1 axis improved I/R-induced myocardial injury via reducing ERS-related signal molecules and downstream pro-apoptotic factors.

Methods

The in vivo I/R model was formed by ligation of the left anterior descending (LAD) coronary artery of C57BL/6J mice. All animals were assigned into the following groups at random: sham, I/R, rAAV9-PERK + I/R, rAAV9-Nrf2 + I/R, rAAV9-HO-1 + I/R, siRNA-HO-1 + rAAV9-PERK + I/R. The ligation of LAD was released after 30 min of ischemia, which was followed by reperfusion of LAD for 4 h. Then the cardiac tissues and blood serum were collected. TUNEL staining, ELISA assay, TTC staining, Western blotting and real-time PCR were used to determine I/R injury-related indicators.

Results

Our results showed that I/R administration triggered cardiomyocytes apoptosis and LDH and CK-MB release, yet overexpression of PERK decreased cellular apoptosis index in the cardiac tissue and reduced levels of LDH and CK-MB in the serum. We further found that the protective actions of PERK against I/R-evoked cardiac damage might be attributed to up-regulation of Nrf2/HO-1 signaling transduction, given that overexpression of Nrf2 and HO-1 ameliorated cardiac cell apoptosis and reduced the size of infarction and ischemia in the myocardial tissue, yet gene silencing of HO-1 invalidated the beneficial roles of PERK overexpression in improving I/R-induced cardiac injury. Then, we investigated whether PERK-activated Nrf2/HO-1 cascade affected endoplasmic reticulum stress (ERS), considering the crucial roles of ERS-associated apoptosis in the development of I/R damage. Our findings indicated that up-regulation of PERK-mediated Nrf2/HO-1 pathway induced the expression reduction of GRP78, CRT, CHOP and caspase-12 both at the transcriptional and translational level. Conclusions: We, for the first time, discovered that up-regulation of PERK/Nrf2/HO-1 axis improved I/R-induced myocardial injury via reducing ERS-related signal molecules and downstream pro-apoptotic factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。