Modern heterogeneous catalysis has benefitted immensely from computational predictions of catalyst structure and its evolution under reaction conditions, first-principles mechanistic investigations, and detailed kinetic modeling, which are rungs on a multiscale workflow. Establishing connections across these rungs and integration with experiments have been challenging. Here, operando catalyst structure prediction techniques using density functional theory simulations and ab initio thermodynamics calculations, molecular dynamics, and machine learning techniques are presented. Surface structure characterization by computational spectroscopic and machine learning techniques is then discussed. Hierarchical approaches in kinetic parameter estimation involving semi-empirical, data-driven, and first-principles calculations and detailed kinetic modeling via mean-field microkinetic modeling and kinetic Monte Carlo simulations are discussed along with methods and the need for uncertainty quantification. With these as the background, this article proposes a bottom-up hierarchical and closed loop modeling framework incorporating consistency checks and iterative refinements at each level and across levels.
Iterative multiscale and multi-physics computations for operando catalyst nanostructure elucidation and kinetic modeling.
阅读:5
作者:Rajan Ajin, Pushkar Anoop P, Dharmalingam Balaji C, Varghese Jithin John
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2023 | 起止号: | 2023 Jun 7; 26(7):107029 |
| doi: | 10.1016/j.isci.2023.107029 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
