PhoXplex: Combining Phospho-enrichable Cross-Linking with Isobaric Labeling for Quantitative Proteome-Wide Mapping of Protein Interfaces.

阅读:3
作者:Hoenger Ramazanova Runa D, Roumeliotis Theodoros I, Wright James C, Choudhary Jyoti S
Integrating cross-linking mass spectrometry (XL-MS) into structural biology workflows provides valuable information about the spatial arrangement of amino acid stretches, which can guide elucidation of protein assembly architecture. Additionally, the combination of XL-MS with peptide quantitation techniques is a powerful approach to delineate protein interface dynamics across diverse conditions. While XL-MS is increasingly effective with isolated proteins or small complexes, its application to whole-cell samples poses technical challenges related to analysis depth and throughput. The use of enrichable cross-linkers has greatly improved the detectability of protein interfaces in a proteome-wide scale, facilitating global protein-protein interaction mapping. Therefore, bringing together enrichable cross-linking and multiplexed peptide quantification is an appealing approach to enable comparative characterization of structural attributes of proteins and protein interactions. Here, we combined phospho-enrichable cross-linking with TMT labeling to develop a streamline workflow (PhoXplex) for the detection of differential structural features across a panel of cell lines in a global scale. We achieved deep coverage with quantification of over 9000 cross-links and long loop-links in total including potentially novel interactions. Overlaying AlphaFold predictions and disorder protein annotations enables exploration of the quantitative cross-linking data set, to reveal possible associations between mutations and protein structures. Lastly, we discuss current shortcomings and perspectives for deep whole-cell profiling of protein interfaces at large-scale.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。