Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti(3)C(2)T(x) MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Machine intelligence accelerated design of conductive MXene aerogels with programmable properties.
阅读:3
作者:Shrestha Snehi, Barvenik Kieran James, Chen Tianle, Yang Haochen, Li Yang, Kesavan Meera Muthachi, Little Joshua M, Whitley Hayden C, Teng Zi, Luo Yaguang, Tubaldi Eleonora, Chen Po-Yen
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2024 | 起止号: | 2024 Jun 1; 15(1):4685 |
| doi: | 10.1038/s41467-024-49011-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
