Probing Glass Formation in Perylene Derivatives via Atomic-Scale Simulations and Bayesian Regression.

阅读:4
作者:Lindgren Eric, Swenson Jan, Müller Christian, Erhart Paul
While the structural dynamics of chromophores are of interest for a range of applications, it is experimentally very challenging to resolve the underlying microscopic mechanisms. At the same time, glassy dynamics are also challenging for atomistic simulations due to the underlying dramatic slowdown over many orders of magnitude. Here, we address this issue by combining atomic scale simulations with autocorrelation function analysis and Bayesian regression, and apply this approach to a set of perylene derivatives as prototypical chromophores. The predicted glass transition temperatures and kinetic fragilities are in semiquantitative agreement with experimental data. We suggest that the remaining error could be caused by an overestimation of the intermolecular cohesion by the force field used in this work. By analyzing the underlying dynamics via the normal vector autocorrelation function, we are able to connect the β and α-relaxation processes in these materials to caged (or librational) dynamics and cooperative rotations of the molecules, respectively. The workflow presented in this work serves as a stepping stone toward understanding glassy dynamics in many-component mixtures of perylene derivatives and is readily extendable to other systems of chromophores.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。