Aptamers are nucleic acids that can bind with high affinity and specificity to a range of target molecules. However, their functionality relies on their secondary and tertiary structures such that the combination of nucleotides determines their three-dimensional conformation. In this study, the binding mechanisms of candidate aptamers and their interactions with selected target proteins found in the cell surface of Leptospira were predicted to select high-affinity aptamers. Four aptamers were evaluated through molecular modeling and docking using available software and web-based tools, following the workflow previously designed for in silico evaluation of DNA aptamers. The most predominant and highly conserved surface-exposed proteins among pathogenic Leptospira species were used as aptamer targets. The highest number of interactions was seen in aptamers AP5 and AP1. Hydrogen bonds, along with a few hydrophobic interactions, occur in most aptamer-protein complexes. Further analysis revealed serine, threonine, glutamine, and lysine as main protein residues. H-bond interactions occur mostly with polar amino acids, as reflected in the predicted interaction profiles of aptamer-protein complexes. In silico strategies allowed the identification of key residues crucial in aptamer-target interaction during aptamer screening. Such information can be used in aptamer modification for improved binding affinity and accuracy for diagnostics application.
In Silico Approaches for the Identification of Aptamer Binding Interactions to Leptospira spp. Cell Surface Proteins.
阅读:6
作者:Almazar Chembie A, Mendoza Marjo V, Rivera Windell L
| 期刊: | Tropical Medicine and Infectious Disease | 影响因子: | 2.600 |
| 时间: | 2023 | 起止号: | 2023 Feb 18; 8(2):125 |
| doi: | 10.3390/tropicalmed8020125 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
