Characterizing genes that are critical for the survival of an organism (i.e. essential) is important to gain a deep understanding of the fundamental cellular and molecular mechanisms that sustain life. Functional genomic investigations of the vinegar fly, Drosophila melanogaster, have unravelled the functions of numerous genes of this model species, but results from phenomic experiments can sometimes be ambiguous. Moreover, the features underlying gene essentiality are poorly understood, posing challenges for computational prediction. Here, we harnessed comprehensive genomic-phenomic datasets publicly available for D. melanogaster and a machine-learning-based workflow to predict essential genes of this fly. We discovered strong predictors of such genes, paving the way for computational predictions of essentiality in less-studied arthropod pests and vectors of infectious diseases.
Combined use of feature engineering and machine-learning to predict essential genes in Drosophila melanogaster.
阅读:3
作者:Campos Tulio L, Korhonen Pasi K, Hofmann Andreas, Gasser Robin B, Young Neil D
| 期刊: | NAR Genomics and Bioinformatics | 影响因子: | 2.800 |
| 时间: | 2020 | 起止号: | 2020 Jul 22; 2(3):lqaa051 |
| doi: | 10.1093/nargab/lqaa051 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
