Chest radiography is a widely used diagnostic imaging procedure in medical practice, which involves prompt reporting of future imaging tests and diagnosis of diseases in the images. In this study, a critical phase in the radiology workflow is automated using the three convolutional neural network (CNN) models, viz. DenseNet121, ResNet50, and EfficientNetB1 for fast and accurate detection of 14 class labels of thoracic pathology diseases based on chest radiography. These models were evaluated on an AUC score for normal versus abnormal chest radiographs using 112120 chest X-ray14 datasets containing various class labels of thoracic pathology diseases to predict the probability of individual diseases and warn clinicians of potential suspicious findings. With DenseNet121, the AUROC scores for hernia and emphysema were predicted as 0.9450 and 0.9120, respectively. Compared to the score values obtained for each class on the dataset, the DenseNet121 outperformed the other two models. This article also aims to develop an automated server to capture fourteen thoracic pathology disease results using a tensor processing unit (TPU). The results of this study demonstrate that our dataset can be used to train models with high diagnostic accuracy for predicting the likelihood of 14 different diseases in abnormal chest radiographs, enabling accurate and efficient discrimination between different types of chest radiographs. This has the potential to bring benefits to various stakeholders and improve patient care.
Utilization of Deep Convolutional Neural Networks for Accurate Chest X-Ray Diagnosis and Disease Detection.
阅读:5
作者:Mann Mukesh, Badoni Rakesh P, Soni Harsh, Al-Shehri Mohammed, Kaushik Aman Chandra, Wei Dong-Qing
| 期刊: | Interdisciplinary Sciences-Computational LIfe Sciences | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Sep;15(3):374-392 |
| doi: | 10.1007/s12539-023-00562-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
