The use of quantum mechanical potentials in protein-ligand affinity prediction is becoming increasingly feasible with growing computational power. To move forward, validation of such potentials on real-world challenges is necessary. To this end, we have collated an extensive set of over a thousand galectin inhibitors with known affinities and docked them into galectin-3. The docked poses were then used to systematically evaluate several modern force fields and semiempirical quantum mechanical (SQM) methods up to the tight-binding level under consistent computational workflow. Implicit solvation models available with the tested methods were used to simulate solvation effects. Overall, the best methods in this study achieved a Pearson correlation of 0.7-0.8 between the computed and experimental affinities. There were differences between the tested methods in their ability to rank ligands across the entire ligand set as well as within subsets of structurally similar ligands. A major discrepancy was observed for a subset of ligands that bind to the protein via a halogen bond, which was clearly challenging for all the tested methods. The inclusion of an entropic term calculated by the rigid-rotor-harmonic-oscillator approximation at SQM level slightly worsened correlation with experiment but brought the calculated affinities closer to experimental values. We also found that the success of the prediction strongly depended on the solvation model. Furthermore, we provide an in-depth analysis of the individual energy terms and their effect on the overall prediction accuracy.
End-Point Affinity Estimation of Galectin Ligands by Classical and Semiempirical Quantum Mechanical Potentials.
阅读:16
作者:Choutka Jan, Kaminský Jakub, Wang Ercheng, Parkan Kamil, Pohl Radek
| 期刊: | Journal of Chemical Information and Modeling | 影响因子: | 5.300 |
| 时间: | 2025 | 起止号: | 2025 Jan 27; 65(2):762-777 |
| doi: | 10.1021/acs.jcim.4c01659 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
