Digital PCR (dPCR) relies on the analysis of individual partitions to accurately quantify nucleic acid species. The most widely used analysis method requires manual clustering through individual visual inspection. Some automated analysis methods have emerged but do not robustly account for multiplexed targets, low target concentration, and assay noise. In this study, we describe an open source analysis software called Calico that uses "data gridding" to increase the sensitivity of clustering toward small clusters. Our workflow also generates quality score metrics in order to gauge and filter individual assay partitions by how well they were classified. We applied our analysis algorithm to multiplexed droplet-based digital PCR data sets in both EvaGreen and probes-based schemes, and targeted the oncogenic BRAF V600E and KRAS G12D mutations. We demonstrate an automated clustering sensitivity of down to 0.1% mutant fraction and filtering of artifactual assay partitions from low quality DNA samples. Overall, we demonstrate a vastly improved approach to analyzing ddPCR data that can be applied to clinical use, where automation and reproducibility are critical.
Robust Multiplexed Clustering and Denoising of Digital PCR Assays by Data Gridding.
阅读:3
作者:Lau Billy T, Wood-Bouwens Christina, Ji Hanlee P
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2017 | 起止号: | 2017 Nov 21; 89(22):11913-11917 |
| doi: | 10.1021/acs.analchem.7b02688 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
