A High-Throughput Workflow for Mass Spectrometry Analysis of Nucleic Acids by Nanoflow Desalting.

阅读:4
作者:Lanzillotti Michael B, Brodbelt Jennifer S
Broad interest in nucleic acids, both their therapeutic capabilities and understanding the nuances of their structure and resulting function, has increased in recent years. Post-transcriptional modifications, in particular, have become an important analysis target, as these covalent modifications to the sugars, nitrogenous bases, and phosphate backbone impart differential functionality to synthetic and biological nucleic acids. Characterizing these post-transcriptional modifications can be difficult with traditional sequencing workflows; however, advancements in top-down mass spectrometry address these challenges. Online desalting platforms have enabled facile sample cleanup and reliable ionization of increasingly large (100 nt) oligonucleotides, and application of existing tandem mass spectrometry techniques has yielded information-rich spectra which can be used to interrogate primary sequences. To extend the capabilities of top-down MS and its analysis of nucleic acids, we have developed a nanoflow desalting platform for high-throughput and low sample-use desalting coupled with collision-induced dissociation (CID), 213 nm ultraviolet photodissociation (UVPD), and activated-ion electron photodetachment dissociation (a-EPD) to yield high-quality MS/MS spectra. Fragments identified using an m/z-domain isotope matching strategy yielded high sequence coverage (>70%) of a yeast phenylalanine tRNA.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。