BACKGROUND: Imaging-based spatial transcriptomics technologies allow us to explore spatial gene expression profiles at the cellular level. Cell type annotation of imaging-based spatial data is challenging due to the small gene panel, but it is a crucial step for downstream analyses. Many good reference-based cell type annotation tools have been developed for single-cell RNA sequencing and sequencing-based spatial transcriptomics data. However, the performance of the reference-based cell type annotation tools on imaging-based spatial transcriptomics data has not been well studied yet. RESULTS: We compared performance of five reference-based methods (SingleR, Azimuth, RCTD, scPred and scmapCell) with the marker-gene-based manual annotation method on an imaging-based Xenium data of human breast cancer. A practical workflow has been demonstrated for preparing a high-quality single-cell RNA reference, evaluating the accuracy, and estimating the running time for reference-based cell type annotation tools. CONCLUSIONS: SingleR was the best performing reference-based cell type annotation tool for the Xenium platform, being fast, accurate and easy to use, with results closely matching those of manual annotation.
Benchmarking cell type annotation methods for 10x Xenium spatial transcriptomics data.
阅读:10
作者:Cheng Jinming, Jin Xinyi, Smyth Gordon K, Chen Yunshun
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Jan 20; 26(1):22 |
| doi: | 10.1186/s12859-025-06044-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
