Automated chemistry platforms have been widely explored, but many focus on fixed tasks for chemical synthesis or analysis. However, a typical synthetic chemistry workflow utilizes both, such as kinetic measurements for reaction development and optimization. Due to their repetitive and time-consuming nature, kinetic measurements are often omitted, which limits the mechanistic investigation of reactions. Herein, we present a "Chemputer" platform with on-line analytics (UV/Vis, NMR) which automates routine kinetic measurements. The system's capabilities are showcased by exploring an inverse electron-demand Diels-Alder using initial rate measurements, a metal complexation using variable time normalization analysis (VTNA), and formation of a series of tosylamide derivatives using Hammett analysis. Over 60 individual experiments are presented which required minimal intervention, highlighting the significant time savings of automation. Owing to the modular design of the platform, which facilitates rapid integration of commercial analytical tools, our approach is widely accessible and adjustable to the reaction under investigation. The platform is operated using the chemical programming language, XDL, hence experimental procedures and results are stored in a precise, computer-readable format. We propose that widespread adoption of this reporting protocol in the chemical community could build a database of validated kinetic data beneficial for Machine Learning.
Reaction Kinetics using a Chemputable Framework for Data Collection and Analysis.
阅读:10
作者:Matysiak Bartosz M, Thomas Dean, Cronin Leroy
| 期刊: | Angewandte Chemie-International Edition | 影响因子: | 16.900 |
| 时间: | 2024 | 起止号: | 2024 Feb 26; 63(9):e202315207 |
| doi: | 10.1002/anie.202315207 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
