Rapid and accurate identification of microorganisms and estimation of their biomasses are of extreme importance to public health. Mass spectrometry has become an important technique for these purposes. Previously we published a workflow named Microorganism Classification and Identification (MiCId v.12.26.2017) that was shown to perform no worse than other workflows. This manuscript presents MiCId v.12.13.2018 that, in comparison with the earlier version v.12.26.2017, allows for biomass estimates, provides more accurate microorganism identifications (better controls the number of false positives), and is robust against database size increase. This significant advance is made possible by several new ingredients introduced: first, we apply a modified expectation-maximization method to compute for each taxon considered a prior probability, which can be used for biomass estimate; second, we introduce a new concept called ownership, through which the participation ratio is computed and use it as the number of taxa to be kept within a cluster of closely related taxa; third, based on confidently identified peptides, we calculate for each taxon its degree of independence from the rest of taxa considered to determine whether or not to split this taxon off the cluster. Using 270 data files, each containing a large number of MS/MS spectra, we show that, in comparison with v.12.26.2017, version v.12.13.2018 yields superior retrieval results. We also show that MiCId v.12.13.2018 can estimate species biomass reasonably well. The new MiCId v.12.13.2018, designed to run in Linux environment, is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.
Robust Accurate Identification and Biomass Estimates of Microorganisms via Tandem Mass Spectrometry.
阅读:5
作者:Alves Gelio, Yu Yi-Kuo
| 期刊: | Journal of the American Society for Mass Spectrometry | 影响因子: | 2.700 |
| 时间: | 2020 | 起止号: | 2020 Jan 2; 31(1):85-102 |
| doi: | 10.1021/jasms.9b00035 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
