The manipulation of electronic polymers' solid-state properties through processing is crucial in electronics and energy research. Yet, efficiently processing electronic polymer solutions into thin films with specific properties remains a formidable challenge. We introduce Polybot, an artificial intelligence (AI) driven automated material laboratory designed to autonomously explore processing pathways for achieving high-conductivity, low-defect electronic polymers films. Leveraging importance-guided Bayesian optimization, Polybot efficiently navigates a complex 7-dimensional processing space. In particular, the automated workflow and algorithms effectively explore the search space, mitigate biases, employ statistical methods to ensure data repeatability, and concurrently optimize multiple objectives with precision. The experimental campaign yields scale-up fabrication recipes, producing transparent conductive thin films with averaged conductivity exceeding 4500âS/cm. Feature importance analysis and morphological characterizations reveal key design factors. This work signifies a significant step towards transforming the manufacturing of electronic polymers, highlighting the potential of AI-driven automation in material science.
Autonomous platform for solution processing of electronic polymers.
阅读:9
作者:Wang Chengshi, Kim Yeon-Ju, Vriza Aikaterini, Batra Rohit, Baskaran Arun, Shan Naisong, Li Nan, Darancet Pierre, Ward Logan, Liu Yuzi, Chan Maria K Y, Sankaranarayanan Subramanian K R S, Fry H Christopher, Miller C Suzanne, Chan Henry, Xu Jie
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Feb 17; 16(1):1498 |
| doi: | 10.1038/s41467-024-55655-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
