Microindentation of cartilage before and after articular loading in a bioreactor: assessment of length-scale dependency using two analysis methods.

阅读:6
作者:Yuh C, O'Bryan C S, Angelini T E, Wimmer M A
BACKGROUND: Microindentation is a technique with high sensitivity and spatial resolution, allowing for measurements at small-scale indentation depths. Various methods of indentation analysis to determine output properties exist. OBJECTIVE: Here, the Oliver-Pharr Method and Hertzian Method were compared for stiffness analyses of articular cartilage at varying length-scales before and after bioreactor loading. METHODS: Using three different conospherical tips with varying radii (20, 100, 793.75 μm), a bioreactor-indenter workflow was performed on cartilage explants to assess changes in stiffness due to articular loading. For all data, both the Oliver-Pharr Method and Hertzian Method were applied for indentation analysis. RESULTS: The reduced moduli calculated by the Hertzian Method were found to be similar to those of the Oliver-Pharr Method when the 20 μm tip size was used. The reduced moduli calculated using the Hertzian Method were found to be consistent across the varying length-scales, whereas for the Oliver-Pharr Method, adhesion/suction led to the largest tip exhibiting an increased average reduced modulus compared to the two smaller tips. Loading induced stiffening of articular cartilage was observed consistently, regardless of tip size or indentation analysis applied. CONCLUSIONS: Overall, geometric linearity is preserved across all tip sizes for the Hertzian Method and may be assumed for the two smaller tip sizes using the Oliver-Pharr Method. These findings further validate the previously described stiffening response of the superficial zone of cartilage after articular loading and demonstrate that the finding is length-scale independent.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。