Automated Image Clarity Detection for the Improvement of Colposcopy Imaging with Multiple Devices.

阅读:5
作者:Ekem Lillian, Skerrett Erica, Huchko Megan J, Ramanujam Nimmi
The proportion of women dying from cervical cancer in middle- and low-income countries is over 60%, twice that of their high-income counterparts. A primary screening strategy to eliminate this burden is cervix visualization and application of 3-5% acetic acid, inducing contrast in potential lesions. Recently, machine learning tools have emerged to aid visual diagnosis. As low-cost visualization tools expand, it is important to maximize image quality at the time of the exam or of images used in algorithms. OBJECTIVE: We present the use of an object detection algorithm, the YOLOv5 model, to localize the cervix and describe blur within a multi-device image database. METHODS: We took advantage of the Fourier domain to provide pseudo-labeling of training and testing images. A YOLOv5 model was trained using Pocket Colposcope, Mobile ODT EVA, and standard of care digital colposcope images. RESULTS: When tested on all devices, this model achieved a mean average precision score, sensitivity, and specificity of 0.9, 0.89, and 0.89, respectively. Mobile ODT EVA and Pocket Colposcope hold out sets yielded mAP score of 0.81 and 0.83, respectively, reflecting the generalizability of the algorithm. Compared to physician annotation, it yielded an accuracy of 0.72. CONCLUSION: This method provides an informed quantitative, generalizable analysis of captured images that is highly concordant with expert annotation. SIGNIFICANCE: This quality control framework can assist in the standardization of colposcopy workflow, data acquisition, and image analysis and in doing so increase the availability of usable positive images for the development of deep learning algorithms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。