Pergola: Boosting Visualization and Analysis of Longitudinal Data by Unlocking Genomic Analysis Tools.

阅读:3
作者:Espinosa-Carrasco Jose, Erb Ionas, Hermoso Pulido Toni, Ponomarenko Julia, Dierssen Mara, Notredame Cedric
The growing appetite of behavioral neuroscience for automated data production is prompting the need for new computational standards allowing improved interoperability, reproducibility, and shareability. We show here how these issues can be solved by repurposing existing genomic formats whose structure perfectly supports the handling of time series. This allows existing genomic analysis and visualization tools to be deployed onto behavioral data. As a proof of principle, we implemented the conversion procedure in Pergola, an open source software, and used genomics tools to reproduce results obtained in mouse, fly, and worm. We also show how common genomics techniques such as principal component analysis, hidden Markov modeling, and volcano plots can be deployed on the reformatted behavioral data. These analyses are easy to share because they depend on the scripting of public software. They are also easy to reproduce thanks to their integration within Nextflow, a workflow manager using containerized software.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。