Interferometric scattering microscopy (iSCAT) is a label-free optical microscopy technique that enables imaging of individual nano-objects such as nanoparticles, viruses, and proteins. Essential to this technique is the suppression of background scattering and identification of signals from nano-objects. In the presence of substrates with high roughness, scattering heterogeneities in the background, when coupled with tiny stage movements, cause features in the background to be manifested in background-suppressed iSCAT images. Traditional computer vision algorithms detect these background features as particles, limiting the accuracy of object detection in iSCAT experiments. Here, we present a pathway to improve particle detection in such situations using supervised machine learning via a mask region-based convolutional neural network (mask R-CNN). Using a model iSCAT experiment of 19.2 nm gold nanoparticles adsorbing to a rough layer-by-layer polyelectrolyte film, we develop a method to generate labeled datasets using experimental background images and simulated particle signals and train the mask R-CNN using limited computational resources via transfer learning. We then compare the performance of the mask R-CNN trained with and without inclusion of experimental backgrounds in the dataset against that of a traditional computer vision object detection algorithm, Haar-like feature detection, by analyzing data from the model experiment. Results demonstrate that including representative backgrounds in training datasets improved the mask R-CNN in differentiating between background and particle signals and elevated performance by markedly reducing false positives. The methodology for creating a labeled dataset with representative experimental backgrounds and simulated signals facilitates the application of machine learning in iSCAT experiments with strong background scattering and thus provides a useful workflow for future researchers to improve their image processing capabilities.
Enhancing Nanoparticle Detection in Interferometric Scattering (iSCAT) Microscopy Using a Mask R-CNN.
阅读:5
作者:Boyle Michael J, Goldman Yale E, Composto Russell J
| 期刊: | Journal of Physical Chemistry B | 影响因子: | 2.900 |
| 时间: | 2023 | 起止号: | 2023 Apr 27; 127(16):3737-3745 |
| doi: | 10.1021/acs.jpcb.3c00097 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
