The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.
Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus.
阅读:7
作者:Fernandes Philipe Oliveira, Dias Anna LetÃcia Teotonio, Dos Santos Júnior Valtair Severino, Sá Magalhães Serafim Mateus, Sousa Yamara Viana, Monteiro Gustavo Claro, Coutinho Isabel Duarte, Valli Marilia, Verzola Marina Mol Sena Andrade, Ottoni Flaviano Melo, Pádua Rodrigo Maia de, Oda Fernando Bombarda, Dos Santos André Gonzaga, Andricopulo Adriano Defini, da Silva Bolzani Vanderlan, Mota Bruno Eduardo Fernandes, Alves Ricardo José, de Oliveira Renata Barbosa, Kronenberger Thales, Maltarollo VinÃcius Gonçalves
| 期刊: | Journal of Chemical Information and Modeling | 影响因子: | 5.300 |
| 时间: | 2024 | 起止号: | 2024 Mar 25; 64(6):1932-1944 |
| doi: | 10.1021/acs.jcim.4c00087 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
