OBJECTIVES: Systemic Lupus Erythematosus is a complex autoimmune disease that leads to significant worsening of quality of life and mortality. Flares appear unpredictably during the disease course and therapies used are often only partially effective. These challenges are mainly due to the molecular heterogeneity of the disease, and in this context, personalized medicine-based approaches offer major promise. With this work we intended to advance in that direction by developing MyPROSLE, an omic-based analytical workflow for measuring the molecular portrait of individual patients to support clinicians in their therapeutic decisions. METHODS: Immunological gene-modules were used to represent the transcriptome of the patients. A dysregulation score for each gene-module was calculated at the patient level based on averaged z-scores. Almost 6100 Lupus and 750 healthy samples were used to analyze the association among dysregulation scores, clinical manifestations, prognosis, flare and remission events and response to Tabalumab. Machine learning-based classification models were built to predict around 100 different clinical parameters based on personalized dysregulation scores. RESULTS: MyPROSLE allows to molecularly summarize patients in 206 gene-modules, clustered into nine main lupus signatures. The combination of these modules revealed highly differentiated pathological mechanisms. We found that the dysregulation of certain gene-modules is strongly associated with specific clinical manifestations, the occurrence of relapses or the presence of long-term remission and drug response. Therefore, MyPROSLE may be used to accurately predict these clinical outcomes. CONCLUSIONS: MyPROSLE (https://myprosle.genyo.es) allows molecular characterization of individual Lupus patients and it extracts key molecular information to support more precise therapeutic decisions.
Scoring personalized molecular portraits identify Systemic Lupus Erythematosus subtypes and predict individualized drug responses, symptomatology and disease progression.
阅读:3
作者:Toro-DomÃnguez Daniel, Martorell-Marugán Jordi, Martinez-Bueno Manuel, López-DomÃnguez Raúl, Carnero-Montoro Elena, Barturen Guillermo, Goldman Daniel, Petri Michelle, Carmona-Sáez Pedro, Alarcón-Riquelme Marta E
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2022 | 起止号: | 2022 Sep 20; 23(5):bbac332 |
| doi: | 10.1093/bib/bbac332 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
