An automated workflow for quantifying RNA transcripts in individual cells in large data-sets.

阅读:4
作者:Pharris Matthew C, Wu Tzu-Ching, Chen Xinping, Wang Xu, Umulis David M, Weake Vikki M, Kinzer-Ursem Tamara L
Advanced molecular probing techniques such as single molecule fluorescence in situ hybridization (smFISH) or RNAscope can be used to assess the quantity and spatial location of mRNA transcripts within cells. Quantifying mRNA expression in large image sets usually involves automated counting of fluorescent spots. Though conventional spot counting algorithms may suffice, they often lack high-throughput capacity and accuracy in cases of crowded signal or excessive noise. Automatic identification of cells and processing of many images is still a challenge. We have developed a method to perform automatic cell boundary identification while providing quantitative data about mRNA transcript levels across many images. Comparisons of mRNA transcript levels identified by the method highly correlate to qPCR measurements of mRNA expression in Drosophila genotypes with different levels of Rhodopsin 1 transcript. We also introduce a graphical user interface to facilitate analysis of large data sets. We expect these methods to translate to model systems where automated image processing can be harnessed to obtain single-cell data. The described method: •Provides relative intensity measurements that scale directly with the number of labeled transcript probes within individual cells.•Allows quantitative assessment of single molecule data from images with crowded signal and moderate signal to noise ratios.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。