Genome-scale metabolic models (GEMs) have been widely employed to predict microorganism behaviors. However, GEMs only consider stoichiometric constraints, leading to a linear increase in simulated growth and product yields as substrate uptake rates rise. This divergence from experimental measurements prompted the creation of enzyme-constrained models (ecModels) for various species, successfully enhancing chemical production. Building upon studies that allocate macromolecule resources, we developed a Python-based workflow (ECMpy) that constructs an enzyme-constrained model. This involves directly imposing an enzyme amount constraint in GEM and accounting for protein subunit composition in reactions. However, this procedure demands manual collection of enzyme kinetic parameter information and subunit composition details, making it rather user-unfriendly. In this work, we've enhanced the ECMpy toolbox to version 2.0, broadening its scope to automatically generate ecGEMs for a wider array of organisms. ECMpy 2.0 automates the retrieval of enzyme kinetic parameters and employs machine learning for predicting these parameters, which significantly enhances parameter coverage. Additionally, ECMpy 2.0 introduces common analytical and visualization features for ecModels, rendering computational results more user accessible. Furthermore, ECMpy 2.0 seamlessly integrates three published algorithms that exploit ecModels to uncover potential targets for metabolic engineering. ECMpy 2.0 is available at https://github.com/tibbdc/ECMpy or as a pip package (https://pypi.org/project/ECMpy/).
ECMpy 2.0: A Python package for automated construction and analysis of enzyme-constrained models.
阅读:4
作者:Mao Zhitao, Niu Jinhui, Zhao Jianxiao, Huang Yuanyuan, Wu Ke, Yun Liyuan, Guan Jirun, Yuan Qianqian, Liao Xiaoping, Wang Zhiwen, Ma Hongwu
| 期刊: | Synthetic and Systems Biotechnology | 影响因子: | 4.400 |
| 时间: | 2024 | 起止号: | 2024 Apr 10; 9(3):494-502 |
| doi: | 10.1016/j.synbio.2024.04.005 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
