Deep Learning of Phase-Contrast Images of Cancer Stem Cells Using a Selected Dataset of High Accuracy Value Using Conditional Generative Adversarial Networks.

阅读:3
作者:Zhang Zaijun, Ishihata Hiroaki, Maruyama Ryuto, Kasai Tomonari, Kameda Hiroyuki, Sugiyama Tomoyasu
Artificial intelligence (AI) technology for image recognition has the potential to identify cancer stem cells (CSCs) in cultures and tissues. CSCs play an important role in the development and relapse of tumors. Although the characteristics of CSCs have been extensively studied, their morphological features remain elusive. The attempt to obtain an AI model identifying CSCs in culture showed the importance of images from spatially and temporally grown cultures of CSCs for deep learning to improve accuracy, but was insufficient. This study aimed to identify a process that is significantly efficient in increasing the accuracy values of the AI model output for predicting CSCs from phase-contrast images. An AI model of conditional generative adversarial network (CGAN) image translation for CSC identification predicted CSCs with various accuracy levels, and convolutional neural network classification of CSC phase-contrast images showed variation in the images. The accuracy of the AI model of CGAN image translation was increased by the AI model built by deep learning of selected CSC images with high accuracy previously calculated by another AI model. The workflow of building an AI model based on CGAN image translation could be useful for the AI prediction of CSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。